3 research outputs found

    Edge Generation Scheduling for DAG Tasks using Deep Reinforcement Learning

    Full text link
    Directed acyclic graph (DAG) tasks are currently adopted in the real-time domain to model complex applications from the automotive, avionics, and industrial domain that implement their functionalities through chains of intercommunicating tasks. This paper studies the problem of scheduling real-time DAG tasks by presenting a novel schedulability test based on the concept of trivial schedulability. Using this schedulability test, we propose a new DAG scheduling framework (edge generation scheduling -- EGS) that attempts to minimize the DAG width by iteratively generating edges while guaranteeing the deadline constraint. We study how to efficiently solve the problem of generating edges by developing a deep reinforcement learning algorithm combined with a graph representation neural network to learn an efficient edge generation policy for EGS. We evaluate the effectiveness of the proposed algorithm by comparing it with state-of-the-art DAG scheduling heuristics and an optimal mixed-integer linear programming baseline. Experimental results show that the proposed algorithm outperforms the state-of-the-art by requiring fewer processors to schedule the same DAG tasks.Comment: Under revie

    GLCC: A General Framework for Graph-Level Clustering

    No full text
    This paper studies the problem of graph-level clustering, which is a novel yet challenging task. This problem is critical in a variety of real-world applications such as protein clustering and genome analysis in bioinformatics. Recent years have witnessed the success of deep clustering coupled with graph neural networks (GNNs). However, existing methods focus on clustering among nodes given a single graph, while exploring clustering on multiple graphs is still under-explored. In this paper, we propose a general graph-level clustering framework named Graph-Level Contrastive Clustering (GLCC) given multiple graphs. Specifically, GLCC first constructs an adaptive affinity graph to explore instance- and cluster-level contrastive learning (CL). Instance-level CL leverages graph Laplacian based contrastive loss to learn clustering-friendly representations while cluster-level CL captures discriminative cluster representations incorporating neighbor information of each sample. Moreover, we utilize neighbor-aware pseudo-labels to reward the optimization of representation learning. The two steps can be alternatively trained to collaborate and benefit each other. Experiments on a range of well-known datasets demonstrate the superiority of our proposed GLCC over competitive baselines
    corecore